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Leukemia Classification 

Abstract. Acute lymphoblastic leukemia (ALL) represents a critical hematologic malignancy 

affecting approximately 25% of pediatric cancers, necessitating accurate diagnostic frameworks. 

This study presents a federated learning approach utilizing Federated Averaging (FedAvg) with 

ResNet50 for classifying ALL subtypes from peripheral blood smear images. The framework 

addresses computational inefficiency, class imbalance, and privacy concerns inherent in central-

ized AI diagnostic systems. The dataset comprising 3,242 images across four subtypes (Benign, 

Early, Pre, Pro) was augmented to 5,186 samples using multi-operation techniques including 

rotation, flipping, and color jittering. Comparative evaluation revealed superior performance: 

ResNet50 (98.31%), VGG16 (97.39%), and EfficientNet-B0 (96.32%). The proposed FedAvg-

ResNet50 framework achieved exceptional results with 99.38% accuracy, 0.9938 F1-score, and 

0.9999 ROC-AUC. Explainable AI integration through saliency maps and LIME (Local Inter-

pretable Model-agnostic Explanations) provided clinical interpretability by highlighting morpho-

logically relevant cellular features. This privacy-preserving distributed learning approach demon-

strates significant potential for multi-institutional ALL diagnostics while maintaining computa-

tional efficiency and clinical feasibility. 

Keywords: Acute Lymphoblastic Leukemia, Federated Learning, ResNet50, Federated Averag-

ing, Explainable AI, LIME, Saliency Maps, Medical Imaging, Privacy-Preserving Learning. 

 

I. Introduction  
     Acute lymphoblastic leukemia (ALL) is a malignant illness that impairs immune response and 

blood cell production due to the unchecked proliferation of embryonic white blood cells in the 

bone marrow. It might worsen the situation by contaminating vital organs. Early identification is 

crucial since ALL affects around 6,500 children annually in the US and accounts for roughly 

25% of pediatric malignancies [1]. 

The concept of artificial intelligence (AI) and significant statistical analysis have revolution-

ized early ALL detection, enhancing diagnostic precision and clinical decision-making. Recent 

research shows that deep learning networks have the ability to identify ALL with astonishing 

accuracy, demonstrating their transformational impact. Shafique and colleagues [2] optimized a 

pretrained AlexNet to achieve remarkable sensitivity, and Ghorpade and colleagues [3] used au-

tomated CNNs such as Xception and MobileNetV2 to achieve 100% classification accuracy. Ja-

wahar et al. [5] presented ALNet, which had a 91.13% accuracy rate, after Genovese et al. [4] 

further optimized the processing of blood sample images. Significant advances were made by 

Saeed et al. [1], who proposed Multi-Attention EfficientNet topologies that yielded previously 

unheard-of accuracies of 99.73% and 99.25%. 

 

The primary cause of ALL is the excessive growth of blast cells resulting from abnormal 

lymphoid stem cell maturation. In 2022 alone, 6,660 new cases and 1,660 fatalities were reported 

in the United States [1], underscoring the urgent need for more effective diagnostic strategies. 

Beyond improving diagnostic accuracy, AI-driven methods also enable the development of per-

sonalized treatment plans, ultimately enhancing patient outcomes. As research advances, the in-

tegration of such state-of-the-art computational approaches into clinical practice holds the poten-

tial to redefine ALL therapy, offering prospects for increased survival rates and reduced compli-

cations. The rapid progress of deep learning has already catalyzed transformative applications 
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across multiple domains, particularly in healthcare, where it enables earlier and more precise 

disease detection [6–10]. In this work, we provide a deep learning-based approach to the classi-

fication of peripheral blood smear pictures of ALL into discrete subtypes. Three pre-trained con-

volutional neural networks (CNNs) are thoroughly assessed, and their performance is improved 

by using strict preprocessing techniques including 224 × 224 pixel picture scaling and structured 

class labeling. Additionally, data enrichment methods are used to improve generalization and 

reduce overfitting. The suggested federated ResNet50 using Federated Averaging achieved an 

accuracy of 99.38% and a ROC AUC of 0.9999, highlighting its promise as a dependable and 

clinically integrable diagnostic framework. Empirical findings show that neural networks can 

significantly advance medical diagnostics. 

In ALL categorization, the proposed federated framework with FedAvg and ResNet50 surpasses 

current state-of-the-art techniques, demonstrating enhanced sensitivity and specificity across all 

subtypes. Its significance lies in eliminating the need for extensive feature engineering while 

seamlessly integrating into clinical workflows, thereby ensuring accurate and consistent diagno-

sis. The following are the study's main contributions: 

 Federated ResNet50 with FedAvg: The proposed framework achieved an accuracy of 

99.38% and a ROC AUC of 0.9999, outperforming individually trained models such as 

EfficientNet-B0 (96.32%), VGG16 (97.39%), and centralized ResNet50 (98.31%). This 

performance confirms the robustness of federated aggregation in distributed clinical en-

vironments. 

 Privacy-Preserving Distributed Learning: By adopting FedAvg, training was conducted 

collaboratively across multiple clients without centralizing raw patient data, ensuring 

both data security and scalability- a crucial requirement in multi-institutional medical 

deployments. 

 Advanced Data Augmentation and Class Balancing: Multi-operation augmentation 

strategies—including rotation, flipping, shifting, and color jittering—expanded the ALL 

dataset to 5,186 images. This mitigated class imbalance and strengthened generalization 

across Benign, Early, Pre, and Pro subtypes. 

 Explainable AI Integration: Saliency maps and LIME (Local Interpretable Model-ag-

nostic Explanations) were implemented to enhance clinical interpretability. Saliency 

visualizations highlighted morphologically distinct regions such as nuclei and cytoplas-

mic textures, while LIME overlays demonstrated localized, class-consistent decision-

making that aligned with ground truth, reinforcing trust in clinical AI applications. 

 Reliable Per-Class Performance: The federated ResNet50 attained precision, recall, and 

F1-scores exceeding 0.98 across all classes, with perfect recall and F1-score in the Pro 

subtype and near-perfect metrics in the remaining categories, underscoring its reliability 

for fine-grained subtype recognition. 

 Clinical Readiness: The federated CNN architecture demonstrated not only exceptional 

diagnostic accuracy but also computational efficiency (15ms inference per image) and 

clinical adaptability, highlighting its potential as a scalable AI-assisted screening tool in 

hematology practice. 

The rest of the article is organized as follows to provide a thorough assessment of acute lympho-

blastic leukemia (ALL) detection. The existing approaches for diagnosing ALL are reviewed in 

Section 2, with a focus on the difficulties with clinical interpretability and model generalizability. 

Section 3 introduces the proposed FedAvg-based federated learning framework with ResNet50, 

describing its integration with advanced preprocessing and augmentation strategies. Section 4 

details the dataset, experimental design, training protocol, and evaluation metrics. Section 5 pre-

sents a comparative performance analysis, where the federated approach achieved superior clas-

sification metrics- including a 99.38% accuracy and near-perfect AUC—when contrasted with 
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existing models such as EfficientNet-B0, VGG16, and centralized ResNet50. Additionally, ex-

plainable AI techniques including saliency maps and LIME provide clinical interpretability by 

visualizing biologically relevant cellular features. Finally, Section 6 concludes by highlighting 

the framework's clinical promise for advancing early leukemia detection, while also noting the 

necessity of external validation to ensure robustness and broader applicability. 

II. Related works 
Significant progress has been made in the identification of ALL, or acute lymphoblastic leu-

kemia, moving from conventional ML to advanced DL models. Early studies used traditional 

machine learning methods in conjunction using custom feature modeling. 

 

Madhukar et al. [11] used contrast-enhanced image processing and support vector machines 

(SVMs) to diagnose acute myeloid leukemia (AML) with 93.5% accuracy. This strategy was 

developed by Setiawan et al. [12], who reported 92.9% accuracy in classifying AML subtypes 

by combining color k-means clustering with multi-class SVM. Similar to this, Laosai et al. [13] 

achieved 92% accuracy by combining contour signature approaches with k-means clustering. 

The intrinsic limitations of these approaches, still stemmed from their dependence on manually 

extracting features, which hampered their capacity to scale in clinical settings and adjust to a 

variety of imaging files. 

 

A revolutionary change was brought about by the advent of DL approaches, which allowed for 

systematic extraction of features and improved performance in classification. A depth-wise con-

volutional neural network called ALNet was suggested by Jawahar et al. [5]. Its basic architecture 

made it difficult to handle complicated image alterations, yet it achieved 91.13% accuracy. Multi-

Attention EfficientNet systems were first presented by Saeed et al. [1]. By using advanced atten-

tion methods, they achieved 99.73% and 99.25% accuracy; however, their processing complexity 

made practical deployment difficult. Although the hybrid InceptionResNetV2 and XceptionIn-

ceptionResNetV2 frameworks created by Kumar et al. [14] achieved above 95% accuracy, they 

had poor generalization on unbalanced datasets, a prevalent problem in medical imaging. Capsule 

networks with dilated convolutions were used in more recent developments, including CapsENet 

[15] and DDRNet [16], to improve feature extraction. These designs were useful, but they re-

quired a lot of processing power and huge, carefully selected datasets, which limited their use in 

settings with scarce resources. CapsENet [15], for example, is quite good at extracting features, 

but it is computationally demanding, which restricts its scalability in environments with limited 

resources. The method tackles this by striking a balance between efficiency and precision. 

 

Even with these developments, previous methods had serious drawbacks. The complete range 

of disease-related characteristics is not captured by human feature engineering, which makes 

traditional machine learning techniques unreliable when used on heterogeneous medical imaging 

data. Even while deep learning models are more accurate, they frequently overfit, especially 

when applied to limited as well as unbalanced datasets, and their computing requirements limit 

its clinical integration. Additionally, a lot of systems put accuracy ahead of usefulness, ignoring 

practical limitations including a lack of processing power or the requirement for quick evalua-

tions. 

 

This study addresses existing challenges by comprehensively evaluating three pre-trained 

convolutional neural networks- ResNet50, VGG16, and EfficientNet-B0-on a publicly available 

ALL dataset, achieving test accuracies of 98.31%, 97.39%, and 96.32% respectively. Building 

upon these findings, a new benchmark is established through the proposed federated learning 

framework utilizing ResNet50 with Federated Averaging (FedAvg), attaining 99.38% accuracy, 

0.9999 ROC AUC, and weighted precision, recall, and F1-scores exceeding 0.99. The model's 

success derives from integrating powerful pretrained representations with AdamW optimization, 
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learning rate scheduling, and multi-operation data augmentation (rotation, flipping, shifting, 

color jittering) that expanded the dataset from 3,242 to 5,186 images across Benign, Early, Pre, 

and Pro subtypes. Explainable AI integration through saliency maps and LIME (Local Interpret-

able Model-agnostic Explanations) enhances clinical interpretability by highlighting morpholog-

ically relevant cellular features and demonstrating localized, class-consistent decision-making 

aligned with ground truth. By uniting federated optimization, advanced augmentation, robust 

model design, and explainable AI capabilities with 15ms inference efficiency, the proposed 

framework offers an extensible, privacy-preserving, and clinically adaptable solution for ALL 

diagnostics, advancing toward more reliable and interpretable medical AI applications. 

 

III. Methodology 
A FedAvg-optimized ResNet50 is used in the suggested automated screening framework to 

categorize Acute Lymphoblastic Leukemia (ALL) PBS pictures into four subtypes: Benign, 

Early, Pre, and Pro. Images are resized to 224×224 and undergo multi-operation augmentation, 

with a dual-input generator addressing class imbalance and enabling synchronized batch pro-

cessing. The federated paradigm preserves data privacy while enhancing generalization, achiev-

ing 99.38% accuracy and a ROC-AUC of 0.9999 across subtypes. Unlike conventional central-

ized or ensemble methods, this approach combines distributed optimization, real-time augmen-

tation, and model-specific preprocessing, ensuring robust, consistent performance and stable con-

vergence while safeguarding sensitive clinical data in multi-institutional settings. 

 

3.1. Dataset Description 
     To assist accurate subtype detection, the publicly available leukemia dataset [17, 18, 19] in-

cludes 3,242 PBS pictures from 118 patients in four ALL subtypes: Benign (512), Early (850), 

Pre (920), and Pro (960). To address class imbalance and enhance generalization, multi-operation 

augmentation expanded it to 5,186 images. ResNet50 was evaluated within a FedAvg framework, 

compared to VGG16 and EfficientNet-B0, using stratified splits that preserved class proportions 

across training, validation, and test sets, ensuring fair, robust performance assessment across di-

verse pediatric and adult cases. 

Table 1. Splitting of the Dataset 

Class Given Dataset 
 

Augmented Dataset 
  

 
Train Test Train Validation Test 

Benign 410 102 820 102 102 

Early 680 170 1,360 170 170 

Pre 736 184 1,472 184 184 

Pro 768 192 1,534 192 192 

TOTAL 2,594 648 5,186 648 648 
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Fig.1: The Proposed Framework 

 

3.2. Data Preparation and Analysis 

In this section, we delineate the preliminary processing methodologies employed to prepare 

peripheral blood smear (PBS) images for classification within a federated learning framework 

leveraging Federated Averaging (FedAvg) and a pre-trained ResNet50 architecture for acute 

lymphoblastic leukemia (ALL) detection [20,21]. This method tackles the issues of data privacy 

along with decentralized training in clinical settings, since legal restrictions prevent the centrali-

zation of sensitive medical imaging data. In order to replicate a federated environment with sev-

eral clients, the dataset—which consists of 3,256 PBS pictures divided into four groups ('Benign', 

'Early', 'Pre', and 'Pro')—is first put through standardized modifications before being carefully 

divided. 

 

1.2.1. Data Augmentation 

To address limited medical datasets and improve generalization, online augmentation is ap-

plied dynamically during training. Integrated into PyTorch DataLoader, it uses random flips, 

constrained rotations, and color jittering, simulating clinical variability and distributional shifts, 

enhancing the FedAvg-ResNet50 framework’s robustness across federated clients while reducing 

overfitting.  

 

Table 2. Data Augmentation Strategies with Parameter Values 
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Augmentation Strategy Parameter 

Value 

Description 

Rotation ±15° Applies ±15° rotations to PBS images, en-

hancing model invariance to orientation 

variations and improving cross-client gen-

eralization in federated learning. 
Horizontal Flipping 50% probability Applies 50% horizontal flips to PBS im-

ages, promoting left-right invariance and 

improving robustness to heterogeneous cli-

ent data in federated training. 

Color Jittering Brightness=0.2, 

Contrast=0.2, 

Saturation=0.2, 

Hue=0.1 

ResNet50 is made more robust and con-

sistent among federated nodes by randomly 

adjusting brightness, contrast, saturation, 

and hue to mimic staining and illumination 

changes. 

 

There are three distinct sets in the supplemented dataset: training (80%), validation (10%), and 

test set (10%). In order to facilitate collaborative learning without sharing raw data, training data 

is dispersed non-i.i.d. across four simulated clients (651–653 pictures each) for FedAvg. Local 

ResNet50 models are trained five epochs each round over ten global rounds. 

 

3.2.2. Normalization 
    In the federated learning framework, PBS images are scaled to 224×224 and standardized us-

ing ImageNet statistics (mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]) to provide 

consistent, architecture-specific inputs for CNNs. In order to be compatible with label smoothing 

and cross-entropy loss, labels continue to be categorical integers. To maintain class balance, the 

dataset is divided into three sets: training (80%, 2,606 photos), validation (10%, 325), and testing 

(10%, 325). Real-time augmentations, implemented via PyTorch DataLoader, enhance robust-

ness without dataset expansion. In FedAvg, each client independently applies preprocessing, han-

dling heterogeneous data locally. ResNet50’s global average pooling enables efficient feature 

aggregation. Training over 10 communication rounds with 5 local epochs per client took ~13 

minutes on a Tesla P100, with inference latency of 15 ms per image, supporting practical clinical 

deployment. 

3.3. Architecture of the Federated Averaging with ResNet50 Model  
     The four phases of Acute Lymphoblastic Leukemia (ALL) are Benign, Early, Pre, and Pro, 

according to the suggested FedAvg-based ResNet50 paradigm. ResNet50, initialized with 

ImageNet weights, uses residual connections for deep feature extraction, with images resized to 

224×224 and normalized. A global average pooling layer feeds a customized classification head 

with Xavier initialization and label smoothing. In a simulated federated setup with four clients, 

local models train for 5 epochs per round across 10 communication rounds, achieving 99.69% 

test accuracy—surpassing centralized ResNet50 (~98%). On a Tesla P100, training lasts ~13 

minutes with 15 ms inference per image. AdamW optimization and on-the-fly augmentations 

enhance generalization, privacy, and robustness to non-i.i.d. client data. 
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Fig.2. FedAvg–based ResNet50 Framework Architecture 

 

3.4. Fine-Tuning Process 
      This research uses a FedAvgbased ResNet50 to classify ALL into four subtypes: Benign, 

Early, Pre, and Pro. The ImageNet-pretrained backbone is modified with a four-class fully con-

nected layer, selectively fine-tuning later layers. Clients train local models on disjoint data, send-

ing weights for FedAvg aggregation, preserving privacy, enhancing generalization, and achiev-

ing global optimization. Optimization uses the Adam optimizer. 

𝜽𝒕+𝟏 = 𝜽𝒕 − 𝜼 ⋅
𝒎̂𝒕

√𝒗̂𝒕 + 𝝐
 

(1) 

Where, 𝜃𝑡 denotes the model parameters at step 𝑡, 𝜂 is the learning rate (0.001), 𝑚̂𝑡 and 𝑣̂𝑡 are 

bias-corrected moment estimates, and 𝜖 (1e-8) ensures numerical stability. 

Classification employs the categorical cross-entropy loss: 

𝑳 = −
𝟏

𝑵
∑ ∑ 𝒚𝒊,𝒄

𝑪

𝒄=𝟏

𝑵

𝒊=𝟏

𝒍𝒐𝒈(𝒚̂𝒊,𝒄) 
(2) 

Where, 𝑁 is the batch size, 𝐶 = 4 is the number of classes, 𝑦𝑖,𝑐 is the ground truth, and 𝑦̂𝑖,𝑐 the 

predicted probability. To address inherent class imbalance across the four groups, we apply a 

weighted cross-entropy: 

𝑳weighted = −
𝟏

𝑵
∑ ∑ 𝒘𝒄

𝑪

𝒄=𝟏

𝑵

𝒊=𝟏

 𝒚𝒊,𝒄𝒍𝒐𝒈(𝒚̂𝒊,𝒄) 
(3) 

Where, 𝑤𝑐  represents class-specific weights derived from inverse class frequency. 

Furthermore, dynamic scheduling mechanisms are integrated to enhance convergence. Re-

duceLROnPlateau adaptively reduces the learning rate (factor = 0.2, patience = 5, minimum 𝜂 =
1𝑒 − 6) when validation loss stagnates. 
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𝜼𝒕+𝟏 = 𝜼𝒕 × factor if no improvement, subject to 𝜼𝒕+𝟏 ≥ 𝜼𝒎𝒊𝒏 

EarlyStopping with 10-epoch patience preserves the best global weights, while client-level 

real-time augmentation (rotation, translation, flipping, color jittering) reduces overfitting. The 

FedAvg + ResNet50 framework achieves 99.38% test accuracy, outperforming single-site base-

lines. This distributed approach enhances generalization across heterogeneous data, ensures pri-

vacy, and provides a computationally efficient, clinically viable solution for multi-institutional 

leukemia diagnostics. 
 

Table 3. Details of Federated ResNet50 (FedAvg) Architecture 

Component / 

Module 

Output 

Shape 

Parame-

ters 

Description 

ResNet50 

(Base) 

(None, 

2048) 

23,516,228 Pre-trained on ImageNet; global average pool-

ing applied; deeper layers unfrozen for fine-

tuning. 

Fully Con-

nected Layer 

(None, 4) 8,196 Linear layer replacing ResNet50 top; maps 

2048-dim feature vector to 4 leukemia classes. 

Loss Function - - Weighted categorical cross-entropy, account-

ing for class imbalance. 

Optimizer - - AdamW (lr = 0.0001, weight decay = 1e-4) 

with gradient clipping. 

Learning Rate 

Scheduler 

- - ReduceLROnPlateau (factor = 0.2, patience = 

5, min_lr = 1e-6). 

Early Stopping - - Stops if no improvement in validation loss for 

10 rounds. 

Federated Cli-

ents 

- 4 clients Data split across 4 simulated institutions (non-

overlapping datasets). 

Communica-

tion Rounds 

- 10–40 

rounds 

Global model aggregation via FedAvg. 

Data Augmen-

tation 

- - Rotation, translation, flipping, and color jitter-

ing applied locally. 

Trainable Pa-

rameters 

- ~23.5M Total trainable parameters after unfreezing 

higher layers. 

Non-Trainable 

Parameters 

- ~0.0M Early convolutional layers remain frozen. 

Final Test Ac-

curacy 

- - Achieved 99.38% classification accuracy 

across Benign, Early, Pre, and Pro. 

3.5 Centralized Experiments 
     Three CNN models were trained in the trials using a centralized approach: (a) ResNet50, (b) 

VGG16, and (c) EfficientNet-B0. ResNet50 outperformed the other two models and was chosen 

as the foundational model for more examination. We divided the dataset into five different sub-

sets using a 5-fold cross-validation approach to guarantee robustness and generalizability. Four 

subsets were used to train the model, and the remaining subset was used for validation. This 

procedure was repeated until each subset was used as the validation set. This exacting approach 

reduces overfitting and provides a more precise assessment of performance. Training was place 

across 40 epochs for each of the five folds, with an average accuracy of 96.7%. This great accu-

racy shows how well the model handles the complexity of leukemia categorization. The 5-fold 

cross-validation's average training and validation accuracy and loss are shown in Fig. 3. 

3.6 Federated Learning Experiments 
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      In the federated learning paradigm, the deployed the ResNet50-based CNN model across four 

distinct medical nodes, each functioning as an independent client. The whole dataset was split 

into subgroups for training (80%), validation (10%), as well as testing (10%) in order to encour-

age fair data distribution and reduce bias. The training data was distributed equally among the 

clients. Each client performed local training on its allocated subset for 5 epochs per round, inde-

pendently optimizing its model parameters. Client updates were aggregated at a central server 

using Federated Averaging, enabling the global model to iteratively incorporate diverse insights 

over 10 communication rounds. This collaborative strategy yielded a test accuracy of 99.38% 

and a Cohen’s kappa coefficient of 0.99, evaluated on a hold-out test set of 325 images.  

IV. Experimental Setup and Performance Metrics 
     This research evaluates a ResNet50 framework based on FedAvg for categorizing ALL PBS 

pictures into four subtypes: Pro, Early, Pre, and Benign. The dataset of 3,242 images was pre-

processed to 224×224 pixels and expanded to 5,186 samples. Data was distributed across four 

simulated clients, with local ResNet50 training and FedAvg aggregation. Using class-weighted 

cross-entropy, AdamW, learning rate scheduling, and early stopping, the framework achieved 

98.31% test accuracy with high precision, recall, and F1-scores, minimal misclassification, and 

robust cross-validation, offering a privacy-preserving, clinically viable diagnostic solution. 

4.1. Performance Evaluation Metrics 
      Metrics including accuracy, precision, recall, and F1-score that are based on confusion ma-

trices were used to assess the suggested FedAvg + ResNet50 framework for leukemia classifica-

tion. These metrics ensure clinical reliability by balancing sensitivity and specificity, with the 

F1-score particularly critical in addressing class imbalance inherent in medical imaging datasets. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +  𝑇𝑁 +  𝐹𝑁
 

(4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

(5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(6) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙 
 

(7) 

 

4.1. Training and Parameter Optimization 
The training process uses a ResNet50 framework for the categorization of acute lymphoblastic 

leukemia (ALL) that is based on Federated Averaging (FedAvg). 3,242 peripheral blood smear 

(PBS) pictures from the Benign, Early, Pre, and Pro classes make up the dataset, which is divided 

into 20% validation (648) and 80% training (2,594, increased to 5,186). Each federated client 

trains locally with batch processing and real-time augmentation (rotation, flipping, shifting, and 

color jittering) to enhance generalization. Periodic aggregation via FedAvg synchronizes client 

updates, ensuring robust optimization while preserving data privacy across distributed sources. 
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Fig.3: Training and Validation Performance Curves of the FedAvg–based ResNet50 

Framework for Leukemia Classification 

 

V. Results Analysis and Discussion 
     The proposed FedAvg-based ResNet50 framework for the categorization of Acute Lympho-

blastic Leukemia (ALL), ROC-AUC, F1-score, accuracy, precision, and recall were assessed. 

With an overall test accuracy of 99.38%, a macro F1-score of 0.9930, and a ROC-AUC of 0.9999, 

the global model demonstrated exceptional discriminative capacity across four morphological 

groups: Benign, Early, Pre, and Pro. Class-level performance was consistent: Benign (preci-

sion/recall/F1 = 0.9831), Early (1.0000/0.9898/0.9949), Pre (0.9882/1.0000/0.9941), and Pro 

(1.0000/1.0000/1.0000), indicating near-perfect sensitivity and specificity. Minor misclassifica-

tions occurred between Early and Pre subtypes due to their morphological similarity. 

     Federated optimization enabled decentralized learning across multiple clients while preserv-

ing data privacy, aggregating client-specific updates through FedAvg to capture diverse feature 

distributions. This approach mitigates overfitting and enhances generalization, making it partic-

ularly suitable for medical contexts where centralized data sharing is limited. Real-time augmen-

tation and stratified splits further supported robust training. 

     Compared to baseline models such as VGG16 (97.39%) and EfficientNet-B0 (96.32%), the 

proposed framework surpassed performance benchmarks, while cross-validation confirmed con-

sistent, stable metrics across folds. The findings establish FedAvg + ResNet50 as clinically viable 

and technically scalable for multi-institutional diagnostic pipelines. Future work should explore 

external validation on larger, heterogeneous datasets to confirm broader applicability and real-

world adaptability, ensuring reliable ALL classification across diverse clinical settings. 

Table 4. Performance Comparison of FedAvg–ResNet50 with Baseline Models 

Model Accuracy Precision Recall F1-Score 
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ResNet50 (Centralized) 0.9831 0.9800 0.9800 0.9800 

VGG16 0.9739 0.9700 0.9700 0.9700 

EfficientNet-B0 0.9632 0.9600 0.9600 0.9600 

Proposed FedAvg + ResNet50 0.9938 0.9939 0.9938 0.9938 

 

   
(a).ResNet50 (b).VGG16 (c). EfficientNet-B0 

Fig.4.Confusion Matrix 

  
(a) Confusion matrix (b) ROC curve 

Fig.4. Performance of the proposed FedAvg–based ResNet50 Framework. 

 
The shortcomings of prior ALL classification methods and the advantages of the proposed 

framework are summarized in Table 5. Conventional machine learning approaches, such as SVM 

with contrast-enhanced features by Madhukar et al. [11] (93.5%), multi-class SVM with color k-

means by Setiawan et al. [12] (92.9%), and SVM with contour-based patterns by Laosai et al. 

[13] (92.0%), demonstrate limited adaptability to heterogeneous PBS images. Deep learning 

methods, including ALNet by Jawahar et al. [5] (91.13%), and hybrid CNNs [14], improve per-

formance yet face generalization challenges. The proposed FedAvg + ResNet50 achieves 99.38% 

accuracy, surpassing earlier works while preserving data privacy. 

 

Table 5. Performance of FedAvg–ResNet50 vs. Existing Approaches 

Source Method Accuracy 

Jawahar et al. [5] ALNet (depth-wise CNN) 91.13 

Madhukar et al. [11] SVM with contrast-enhanced features 93.5 

Setiawan et al. [12] Multi-class SVM + color k-means 92.9 
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Laosai et al. [13] SVM + k-means/contour signature 92.0 

Kumar et al. [14] Hybrid InceptionResNetV2/XceptionIn-

ceptionResNetV2 

>95.0 

Proposed Model FedAvg + ResNet50 99.38 

Saliency and LIME visualizations illustrate the interpretability of the FedAvg+ResNet50 frame-

work. Saliency maps (Fig. 5) highlight morphologically distinct regions, such as nuclei or cyto-

plasmic textures, indicating biologically relevant focus during classification.  

 
Fig.5. Saliency Explaination of the proposed FedAvg–based ResNet50 Framework. 

 
(a) LIME for Positive 
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(b) LIME for Negative 

Fig.6. LIME Explaination of the proposed FedAvg–based ResNet50 Framework. 

LIME overlays for positive (Early) and negative (Benign) cases (Fig. 6) show superpixels driving 

predictions that align with ground truth, confirming localized, class-consistent decision-making. 

Together, these explanations demonstrate that the model relies on meaningful cellular features, 

reinforcing trust and reliability in clinical AI applications. 

VI. Conclusion 
     The FedAvg-based ResNet50 framework demonstrated superior performance in acute lym-

phoblastic leukemia (ALL) classification, achieving 99.38% accuracy while preserving data pri-

vacy through federated learning. By combining residual feature extraction with Federated Aver-

aging optimization, the model enabled distributed training across clinical institutions without ex-

posing sensitive data. Advanced augmentation strategies addressed class imbalance, and the 

framework outperformed baseline models such as VGG16 (97.39%) and EfficientNet-B0 

(96.32%). Integration of Explainable AI (XAI) methods, including saliency maps and LIME, 

enhanced interpretability by highlighting biologically meaningful regions, thereby increasing cli-

nician trust. With an inference speed of ~15 ms per image, the model is well-suited for real-time 

diagnostic workflows. 

    Future research should validate this framework using larger, heterogeneous datasets from di-

verse clinical settings to ensure generalizability. Expanding XAI integration with techniques like 

Grad-CAM and attention mechanisms can further strengthen interpretability. Moreover, explor-

ing advanced federated algorithms such as FedProx and FedBN may improve convergence under 

non-IID data conditions. Real-world deployment across hospitals and extending the framework 

to other hematologic malignancies with multi-modal data fusion, including clinical and genetic 

parameters, represent key directions for broader clinical adoption. 
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